Meetup Logo

Deep Learning Italia – Roma – Luglio 2018

1) Francesco Pugliese – Co-Founder Deep Learning Italia | Ricercato ISTAT
“Introduzione divulgativa alle Reti Neurali e al Deep Learning”.
Abstract: Descrizione introduttiva del modello del neurone artificiale e confronto con il neurone biologico, la storia delle reti neurali e come si è arrivati oggi al Deep Learning, detrattori vs sostenitori delle reti neurali e vittoria dei sostenitori (Hinton, LeCunn, Benjo). I successi del Deep Learning e la disfatta del Machine Learning tradizionale di oggi in settori come Computer Vision, Natural Language Processing e Giochi (GO, Chess, ecc.).

2) Matteo Testi- Founder Deep Learning Italia
“Introduzione alla piattaforma Deep Learning Italia”
Abstract: Illustrazione della community Deep Learning Italia e degli strumenti oggi sviluppati e a disposizione della community. Introduzione alle features del sito i tutorials, il question & answer, le references, gli sviluppi futuri.

3) Ayadi Ala Eddine – Data Scientist at InstaDeep UK – AI researcher intern at Università degli Studi di Padova on deep reinforcement learning and a kaggle expert with more than 3 years of experience in data science, machine learning and statistics by working on real-life problems, a passion holder for deploying predictive models and deep learning techniques.
“Generative Adversarial Networks – Tensorflow to build GAN’s”
Abstract: GANs has been one of the most interesting developments in deep learning and machine learning recently. Through an innovative combination of computational graphs and game theory, we are going to show you how two models fighting against each other would be
able to co-train and generate new samples. Finally, we will end up with a demo where I will show you some cool stuff people have done using GAN and give you links to some of the important resources for getting deeper into these techniques.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *