Icone cl2 10

La GTX 745 y la instalación de tensorflow – gpu en Windows

Autora: Eleonora Bernasconi

 

Especificaciones de la tarjeta de gráficos NVIDIA GeForce GTX 745

Especificaciones: https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-745-oem/specifications

Núcleos CUDA: 384

Base Clock (MHz): 1033

Velocidad de la memoria ( Gbps ): 1.8 Gbps

Cantidad de memoria: 4 GB

Interfaz de memoria: DDR3

Ancho de banda máx (GB/sec): 28.8

 

Figura 01 – nvidia-smi para el monitoreo de GPU

Abra el símbolo del sistema e ingrese:

cd C:\Program Files\NVIDIA Corporation\NVSMI

nvidia-smi

N.B. El porcentaje de uso de la GPU oscila entre 92% y 94%, en el Administrador de tareas de Windows permanece en 70%.

 

Instalación de Tensorflow con GPU para Windows 10

Requisitos

Python 3.5

Nvidia CUDA GPU. Verifique que la GPU sea compatible con CUDA.

Configurando la tarjeta GPU Nvidia

Instala Cuda Toolkit 8.0 e cuDNN v5.1.

Descarga e instalación de CUDA Toolkit

Toolkit 8.0 https://developer.nvidia.com/cuda-downloads

Ejemplo de directorio de instalación: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0

Descarga e instalación de cuDNN

Installa cuDNN versione 5.1 per Windows 10: https://developer.nvidia.com/cudnn

Extraiga los archivos cuDNN e ingréselos en el directorio Toolkit.

Variables de entorno

Después de instalar CUDA toolkit, asegúrese de que CUDA_HOME esté configurado en las variables de entorno; de lo contrario, agréguelo manualmente.

Figura 02 – Variables de entorno CUDA_HOME parte 01

 

Figura 03 – Variables de entorno CUDA_HOME parte 02

Instala Anaconda

Descarga : https://www.anaconda.com/download/

Cree un nuevo entorno con el nombre tensorflow-gpu y la versión 3.5.2 de python

conda create -n tensorflow-gpu python=3.5.2

N.B. En caso de que se encuentre con versiones incompatibles entre sí, simplemente active estos comandos para resolver el problema:

conda install -c conda-forge tensorflow-gpu

Anaconda instalará automáticamente las versiones requeridas de cuda, cudNN y otros paquetes.

Figura 04 – conda install -c conda-forge tensorflow-gpu

activate tensorflow-gpu

Figura 05 – activate tensorflow-gpu

 

Instala tensorFlow

pip install tensorflow-gpu

Figura 06 – pip install tensorflow-gpu

i Ahora ha terminado y tiene instalado con éxito tensorflow con la GPU !

i Recuerde activar el comando:activate tensorflow-gpu para entrar en modo GPU!

Prueba de GPU

python

import tensorflow as tf

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

 

Figura 07 – prueba de GPU

 

Prueba en CIFAR-10 con 10 épocas

Tiempo promedio por época:150 sec

Tiempo total: 25 min

Figura 08 – Prueba en CIFAR-10 con 10 épocas 

0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *